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ANAIYSIS OF FREE-MOLECULE FLOW WITH SURFACE
DIFFUSION THROUGH CYLINDRICAL TUBES
by Thaine W. Reynolds and Edward A. Richley

TLewis Research Center

SUMMARY

The integrodifferential eguation governing flow through cylindrical tubes
under combined free-molecule gas flow and surface diffusion has been solved
numerically for tube length-to-radius ratios of 1/16, 1/8, 1, 4, and 16 and for
a wide range of flow parameters. Several transmission probability relations are
developed that permit various comparisons of flow with and without surface dif-
fusion for given tube length-to-radius ratios. General results are tabulated
for inlet and outlet surface coverage fractions, gradients in surface coverage
fraction, and transmission factors.

Specific solutions for tube flows matched to inlet and outlet surface
flows are given. Results are presented for the single tube solutions only, but
relations are given by which these results can be applied to models of porous
media as well. In the matched solutions, the total transmission factor in-
creased with increasing values of the surface diffusion parameter. The solu-
tions are shown to be asymptotic to the long tube approximations.

Results are compared with those of other investigators and differences are
found to be primarily due to variations in basic assumptions with respect to
the model.

INTRODUCTION

Flow of gases at low pressures through tubes of small diameter (of the
order of microns) may be influenced considerably by the process of surface dif-
fusion of adsorbed molecules along the walls of the passage. These surface
diffusion effects have been of concern in the evaluation of the flow through
small single tubes (or orifices) such as utilized in the Knudsen cell measure-
ments of vapor pressure (ref. 1), as well as in the study of flow through vari-
ous porous media. Examples of the latter include powder beds for gas adsorp-
tion (ref. 2), porous plugs for cathodes (ref. 3), and certain ion rockets
(refs. 4 and 5). The theoretical approach to treatment of these flows is
usually a single tube model.



Free-molecule flow of gases (i.e., flow at very low pressures) through
passages of various cross sectlons appears to be adequately treated (refs. 3,
6, 7, and 8); however, the combined mechanism of free-molecule and surface dif-
fusion flow has received much less attention. Usually, efforts to solve the
combined flow problem are directed toward specific applications (e.g., refs. 1,
5, 9, and 10). The resulting solutions are often restricted to a particular
system (i.e., to a specific configuration or to a specific gas-metal combina-
tion) because of the boundary conditions and simplifying assumptions that were
made. For example, the orifice flow treatment in reference 1 is restricted to
length-to~radius ratio tubes much less than unity. Treatments such as de-
scribed in references 9 and 10 are restricted to long tubes (length-to-radius
ratio >50) because of the use of the limiting form of the Clausing factor and
other restricting assumptions. The analysis presented in this report, is not
restricted in length-to-radius ratio, but covers the range from zero to lengths
where the long tube approximations become applicable.

The problem is such that more than one equation may be required to de-
scribe the flow; for example, one for flow through the tube, one for flow along
the upstream surface, and one for flow along the downstream surface (see
sketeh (a)). The equation describing the combined free-molecule and surface-
diffusion flow through the tube is the most complex. It is a second-order
integrodifferential equation not amenable to closed-form solution. Various
boundary conditions may be specified, which in turn must be matched to condi-
tions at the inlet and exit ends of the tube to obtain a complete solution.
These boundary conditions will be discussed in detail in terms of the physical
requirements of the problem. Transmission coefficients for the combined flow
are also developed and presented.

An important feature of the tube flow solutions presented herein is that
they are obtained by an iterative numerical method that exhibits very rapid
convergence and 1s completely general. The technique 1s described in appen-
dix D by Carl D. Bogart.

ANATYSIS
The Model

Establishing an appropriate mathematical model from the physical one ap-
pears extremely difficult if all possible aspects are to be included, that is,
if it is to represent a pore in a pilece of porous material as well as a simple
cylindrical hole in a plate. In the former case, where gross flow characteris-
tics are primarily of interest, recourse is often made to the inclusion of un-
certainty factors applied to macroscopic flow relations without regard for the
detailed physical model (ref. 2). These factors must then be evaluated experi-
mentally for specific systems. Another macroscopic approach (described in de-
tail in ref. 4) treats the porous medium as if it consisted of parallel capil-
laries having some mean capillary radius. Physically this model also seems to
be satisfactory for a microscopic approach as long as it is recognized as merely
a convenlent tool for mathematical analysis. The analysis can be constructed
around a single typical capillary, and it is equally applicable to a wide variety
of problems. The model used herein is depicted in sketch (a), which shows the
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gas-phase and surface-diffusion compo-
nents of the flow. Throughout this
report the use of the term gas-phase
is restricted to mean that component
of particle flow in free space and
does not include any particle flow
along surfaces., That flow which in-
cludes both components will always
have the term total attached to it.

Ahead of the upstream end of the
tube, the gas is in equilibrium. Par-
ticles arrive at and evaporate from
the wall leaving it with a net surface
coverage. Because of surface diffu-
sion, the surface coverage is shown to
decrease along the upstream surface in

\\; L Q// the direction of the tube entrance.

Surface flow-,  ~ Surface-diffusion flow takes place

7~ \xessx\ - through the tube also, and in this

{, \ /”f/ N\ R case there is an accompanying gas-

Upstream \_’ /,\ /\\5* 222% phase flow. The gas-phase flow is
Gas phase — < . assumed to be free-molecule flow; that
flow ’f, ‘::\ is, particle-particle collisions are
\{ 2l negligible and only particle-wall col-

Adsorbed _ Flow dlrectlon N . . .

lisions must be considered. Along the

layer —~ Cross section through single capillary downstream surface, which is exposed
(@) to vacuum, flow 1s by surface diffu-

sion with evaporation. Thus, it can
be seen that the system can be broken into three segments. These segments will
be described in detail in the next section and the governing mathematical rela-
tions will be developed. Additional appropriate assumptions or restrictions
regarding the flow will be introduced as they become applicable.

The Tube

Flow through the tube consists of both gas-phase and surface-diffusion
flow. Particles arrive at and depart from the tube wall in much the same way
that takes place on the upstream surface; however, as will be seen, the mathe-
matical relation describing the process differs considerably. Particle leaving
rate from the tube wall when no surface-diffusion effect is considered is given
by the following equation first derived by Clausing (ref. 6) and developed in
detail in reference 8:

T
0

(Symbols are defined in appendix A.) The barred quantities are dimensionless
ratios with respect to the tube radius R. Sketch (b) will aid in visualizing
the physical significance of the terms in equation (1).



The left side of equation (1) is the local
net leaving rate at an element of area at lo-
cation 2 and is assumed equal to the local net

Location 1 2 3 arrival rate. On the right side of the equa-
ey Wi / tion, the term p3Fy o 1s the arrival rate of
\ __\ R TN ! particles directly from the inlet. The quan-
T * "(\ ' tity Fl o 1s a geometric factor arising from
N:r/ F1,2 \3\ Ao \\ the assuliption that the flow has a random di-
el
. J rectional distribution (ref. 8):
2
L + 2
1 *2 -
{b) Fl,z = -2— —_-2——175 - XZ (2)
(%5 + 4)

The second term on the right side of equation (1) is the arrival rate of parti-
cles from the tube wall (location 3) integrated over the complete area of the
wall. It will be recognized that v(x) is the function of which v(xz) is a
local value. The geometric factor in this term is

. -5 (x - %) + 6 -
= 1-|x ~x 3
3,2 T 2 2 [(% - _}22)2 N 4:]3/2

|

An analytic solution to equation (1) has not yet been published; however,
numerical solutions have been obtained by several investigators (refs. 8, 11
to 19). The results show that v(x) is almost linear. An interesting feature
of this near linear relation is discussed in appendix B.

If an adsorbed layer is present on the tube walls, then a term accounting
for surface-diffusion flow must be added to equation (1):

L
v(_iz) = “lFl,Z + / v(;c)FS’2 ax + Egé— o"(zz) (4)
0O

This added term represents the net accumulation of particles at location 2 due
to flow by surface diffusion. It is the solution of equation (4) that is of
primary interest to describe the flow through the tube. (A derivation of

eq. (4) is given in ref. 3.) Before a solution of equation (4) can be at-
tempted, a relation between the local leaving rate v and surface concentra-
tion o 1is required. Where experimental data are available for a specific
system they may be used (see ref. 5). More generally, various analytical rela-
tions for surfaces at constant temperature (adsorption isotherms) have been
developed and are given in the literature. A detailed discussion of all these
is beyond the scope of this report; however, appendix C is included to give an
insight into some of the fundamental assumptions and common relations. As dis-
cussed in appendix C, the relation used herein, which is also an appropriate
approximation of all the relations given, for low values of surface coverage
fraction 6(6 = o/cm), is
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o c,.0
V=?=—'-l_—-=019 (5)

A useful concept is the time required to deposit a monolayer onto a clean
surface assuming no evaporation occurs:

o}
Hy

Then, when the evaporation rate v equals the arrival rate pj, the surface
coverage fraction can be designated (from egs. (5) and (6)) as

o
1 T
O = 5. = T, (7)

B

The surface coverage fraction 6, 1is the maximum value of coverage that is
expected in any system in the sense that it is at the maximum arrival rate and
occurs in the absence of surface diffusion effects. Then, at any other evapo-
ration rate v(X), again from equations (5) and (6),

o
v(x) _oTm_ %m _ e(x) (8)
by T O, T O

T

m

Thus, by using equation (8), equation (4) can be expressed in terms of 6 as

L
5(52) =F 5 * f 5(55)1«“5,2 dx + 025"(x2) (9)
0
where
5(x) = & (10)
and
Do
c, = 6 (11)
2 2 Yoo
HqR

With the specification of Co, L and two boundary conditions, equation (9)
can be solved by using iterative numerical techniques. The required boundary
conditions can_be specified by selecting any two of the variables 6(0), o(L),
6'(0), or B'(L). The choice is a matter of convenience with respect to the
particular numerical procedure used. In the one used herein the values of

9(0) and 6(L) are specified as boundary conditions (see appendix D). Values



of §' (needed later) are then obtain-

Eﬁgﬁmgé;% /A/'Dwrﬂm“1 able from the resulting solutions.
r o —. surface
::EJ. - Mathematical solutions of equa-
<:} ) o tion (9) may be obtained without regard
V4 for upstream surface or downstream sur-
S~ f :: face flows. As will be seen however,
v N depending on the physical model of the
el - system, only certain of the solutions
H1 ” may be applicable.

(c)

The Upstream and Downstream Surfaces

For the model chosen as illustrative of one physical system the upstream
and downstream surfaces may be regarded as annular surfaces of inner radius R,
as shown in sketch (c).

Upstream surface. - The differential equation describing the steady-state
surface concentration o is (ref. 5)

g[o"@ + L o'(®)] = Bv - ) (12)
T
Equation (12) can be rewritten by using equations (5) and (11) as
725"(F) +F0'(T) - 7058 = -CsT (13)
where
Cs =£—i = 51‘2- (14)

from equations (6), (7), and (11).

Equation (13) is in the form of a modified Bessel equation for which the
general solution is

o(r) = bIy(r+/Cz) + cK(r+/Cz) + 1 (15)

For a single tube or hole in a plate, as r gets large, 6(r) approaches 6.
This requires the constant b _to be zero since I goes to infinity and Ko
goes to zero with increasing r. For this case

o(r) = ecK(r~fCz) + 1L (16)

In general, however, for closely spaced tubes (pores) the constant b is
not zero. Assume that at some maximum radial distance p the concentration
gradient is zero; that is,



6'(p) =0 (17)

Applying this boundary condition to equation (15) yields

b Kj_(aw/c3) (18)
c I]_(E-\/Cs)
By using this relation, then, equation (15) becomes for the general case
K1(p+/C3) _ — R
o EiL:r—Eéj Io(r1/03) + Ko(rW/CS)
1 - 8(F) 1(P/C3 |
1.5, %(p-/C3) (19)
-0
1\PVb3 _—
R ———= Io(~/C3) + Ky(~+/C3)
Il(P'\/C_'_z))
For widely spaced pores this reduces to the single tube relation (i.e., for
p = °°>:
1-3(7) Kolr+/Cz)
LEWA (20)
Differentiation of equation (19) yields for the slope
K]_(P'\/C5 -
(r+/Cz - Kl(rw/
—_ - — Il(pvcg)
f\Pvvs/ °v/Cs
Io(-\/ ) + K’O - 3)
1(pP/C3)
which for the single tube at T = R becomes
_. _ K (~/C3)
6f = (1 - 6g)~+/Cq —=— (22)
K, (~+/C3)
With Cz specified equation (22) may be solved for various values of 5&.
This equatlon will be considered in detail in the section Matched Boundary
Solutions.
The quantities 6, and Cz are not independent but are related from
equations (7) and (14):
Cx = R3(DO,ty) "+ (23)

Downstream surface. - There is no gas-phase arrival rate on the downstream
surface (see sketch (c)), and the differential equation describing the steady-




state surface concentration on this surface is
9[0"(?) + o‘(?)] = v4R? (24)
r
A development similar to that used for the upstream surface leads to the

following solutions:

For the general case of closely spaced pores

Kl(p'\/@)

I
55 __L(+Cs) O(r‘[_HKO(r@)

Ar) o (25)
or Kl(Pw/EE)
(\/( + K (\fc—
1 () e
and for the single tube or pore
8(x) _ Ko(x+/Cs) (26)

or  Ko(~/C3)

The slope for the general case is

p_\/\/_—__i I;(r~+/C3) - K;(r~/C3)

81(¥) = 9;n/Cs — = (27)

Ki(pwf~_)
e Io(~/C3) + Kp(~/Cx)

and for the single tube at r =R

g = -6g/Cs

K1(~/C3)
5 Ko(~/C3) (28)

With Cz specified equation (28 ) may be solved for various values of éﬁ.
This equation will be considered in detail in the section Matched Boundary

Solutions.

The similarity between the upstream and downstream relations is apparent.
Pigure 1 is a plot of the specified functions that appear in both equations (21)
and (27). This combination of functions is herein defined as



K (F+/C5)
I;(p+/C5)
KJ_(P‘\/EE)
L (p vc )

and is plotted against the variable Cs in figure 1, Co being the reciprocal
of Cz (eq. (14)).

1, (7+/33) - Ka(F+/T3)

(29)

F(Cy) = +/C5 -
Io(~/C3) + Ko(+/Cz)

It is apparent from figure 1 that for values of C» less than about unity,
the 6' solutions for the single tube case (p = ») are applicable to closely
spaced pores (p =~ 2) as well. Subsequent solutions will be presented only for
the case p = wo. The solutions for cases of p less than infinity may be ob-
tained by following the same procedures to be outlined for the single tube case,
but by using the appropriate curve from figure 1.

Matching Boundary Conditions

Three equations of primary interest for the physical model are equation (9)
describing the tube flow, equation (21) describing the upstream surface flow,
and equation (27) describing the downstream surface flow. These equations are
mathematically independent in that each may be solved with no knowledge of the
others. The resulting solutions may be combined to represent a physical system
provided some interrelation is specified.

In the treatment of the physical model given herein, complete solutions
that satisfy the following boundary conditions will be presented:

6o = 6 (upstream) (30a)
9(’) = 91'{ (upstream) (30b)
0, = Oy (downstream) (30c)
1 1
6. = 6_ (downstream) (30a)
L R

In addition, a wide variety of independent tube flow solutions will be given
from which it is possible to construct complete solutions to other physical
systems.

The same boundary conditions (egs. (30a) to (304)) are specified in refer-
ence 5. In reference 1, 6g at the upstream end is equated to 6,, thus elim-
inating all upstream surface diffusion effects from the system. At the down-
stream end the required matching condition of reference 1 is the same as equa-
tion (304).



Transmission Factor

Surface- !
diffusion Y ] o
flow, ny e —> Ny The various transmission factors that are
Gas-phase  — | | — ny defined in the case of gas-phase transport
flow, n __,L__ﬁ___\__~_J__* alone are all ratios of the net flow out the
g’ 4 exit to the inlet gas-phase arrival rate. For
Inlet Exit that case there is no other flow mechanism
plane, plane, introducing material into the tube; however,
x=0 x=L with surface transport possible, as in the
@ Present case, some mass flow may be introduced

into the tube by surface transport also. It
may, in fact, exceed that introduced by the gas-phase transport. Nevertheless,
it is still convenient to define transmission factors based on the inlet gas-
phase arrival rate alone, even though the transmission factor may then exceed
unity. The inlet gas arrival rate is a readily evaluated number, independent
of the tube flow conditions, while the surface transport portion of the inlet
flow is not. The various transmission factors presented herein, therefore, are
all referred to the inlet gas arrival rate only.

Consider the system depicted in sketch (d). The mass flow (particles/sec)
crossing the inlet plane due to gas-phase flow is

n; = MlﬂRZ (31)

and that due to surface-diffusion flow is
do 1
n, = -27(R9<&>O = 21906 (32)

At the exit plane the mass flow expressions are more complex, The gas-phase
flow is

= 2
ng = PyuqnR (33)
where Pg 1is a gas-phase transmission factor, defined as the ratio of the gas-
phase flow passing the outlet plane to the gas-phase flow entering across the

inlet plane. As shown in reference 8, Pp may be considered to consist of two
components, a direct and an indirect transmission factor:

where Py is simply the fraction of entering particles that pass directly
through the tube without any encounters with the wall. It is a function only

of L:
— =
P. =1+ %T - % (TP + 4) (35)

The flow P; is the ratio of the exiting gas-phase flow coming off the tube
wall to the entering gas-phase flow. It 1s given by the following integral

(ref. 8):

10



T-D[E-%2+1-77] _ _
() -~ (36)
/ /9 (L-§)2+1+52]2—4§2}3/26xdr >

The function ©(x) is given by equation (9).

The surface-diffusion flow out the exit is

ng = -21nR9 (%%)L = -2ﬂ90m9£, (37)

The total transmission factor is, then,

nz +n
3 4
Pp = _fnl

= Pg + Pg (38)

where Pg 1is a newly defined surface transmission factor

P i 2C. 3.
s @ T 291, (39)

Other Considerations

General numerical solutions of the tube flow equation (eq. (9)) are ob-
tainable with the specification of Cs, L, g, and 0O5,. ©Since solutions are

obtained by an iterative procedure, specification of a convergence factor ¢
is also required. Convergence is defined herein in terms of this factor as

5£§?n+1 - E(E)n
5(x),

< e =100 (40)

max

Before going on to the general and matched-boundary soclutions, a brief
discussion on the makeup of the 6, and Co terms may aid in considering the
physical interpretation of the results. As seen from equation (7), specifying
6, from physical considerations requires a knowledge of the upstream equilib-
rium arrival rate pq and the parameter Cl. For a gilven gas py 1s related
to the pressure and temperature:

-1/2

p(27MkT) (41)

“l:
As an example, figure 2 is included to show the variation of p; with T for
a few substances, where the vapor pressure relations of p with T from
reference 20 have been used. The parameter Cq 1is expressed in terms of the
quantities o, v, Tp, Q, and T, from equation (C10). Some of these are

11



fairly constant, but others are highly uncertain and may vary widely with mate-
rial. For many materials the monolayer coverage Oy 1s on the order of 1015
atoms per centimeter squared. As mentioned in appendix C, the sticking coeffi-
cient Yy has been assumed to be unity. The quantity 75 1s a proportionality
constant relating the mean adsorption lifetime T with the desorption energy
Q and the temperature of the system (eg. (C7)). A reasonable value of Tp is
about 1013 second although values considerably larger than this have been
reported. Based on the value of 10‘15, figure 3 gives the variation of log;gT
with Q@ for various values of T. If the relation between @ and T is
known for a given system, all the quantities necessary for evaluating 6, are

available.

As shown in equation (11), two additional parameters are required to eval-
uate Cop: the surface-diffusion coefficient & and the tube radius R. Ex-
perimental values of @ are very sparse. A value of 10-4 centimeter squared
per second was assumed for silver vapor on molybdenum and on nickel in refer-
ence 1. At high temperature the value of 2 for cesium on tungsten is also
about 10-% centimeter squared per second (ref. 21). A theoretical approach to
describing 2 is also given in reference 21, where 92 1is considered to depend
upon the adsorption time T and the mean transit time t. The relation

employed i1s

2
1 a
D=77+1 (42)
where the mean transit time across an adsorption site t 1is
b= 2 — (43)
v (ﬂm)ﬂ?
2m

At low temperature the adsorption time is much longer than the transit time,

and 92 exhibits an exponential temperature dependence. At high temperature

the transit time becomes controlling, and then & varies as the square root of
the temperature. This behavior is portrayed in sketch (e). At the higher tem-
perature levels then, it is reasonable to expect 2 to be of the same order of
magnitude for different systems, its variation being only inverse with the
square root of the particle mass. The use of the term high temperature is

only relative, of course, the important factor being the relation of the ad-
sorption and transit times.

This in brief describes the physical parameters of interest. It should
also be pointed out that with regard to the upstream and downstream surface
flow relations, (egs. (21) and (27)), no additional parameters are required to

define Cgz.

The following sketch recapitulates the material discussed thus far. In
sketch (f) the circled numbers refer to applicable equations, and the relation
of p and Q@ to T i1s assumed known. As pointed out previously, specifica-
tion of certain physical parameters imposes interrelations among the C's
(e.g., eq. (23)). Conversely, the C's may be specified with no knowledge of
the physical parameters.

1z
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RESULTS AND DISCUSSION
General Tube Solutions

Solutions to equation (9) were carried out on an IBM 7094 computer by us-
ing the procedure outlined_in appendix D. Initially, solutions were obtained
for various pairs of 60, 9L values for each combination of L and Co. It
is not practical to present all the tube-wall coverage data that were obtained.
Sketches (g), (h), and (i) are shown as typical examples for various levels of
coverage at the end points. The trend of the solutions which was obtained in
all cases can be noted from these sketches. When 65 and 07 are fixed, the

,High Co/T
High CyfT

x>

~I = A
%) = 3®

Lo 6T S 1-A

(g} (h

13



L=0.125 5
Cp = 0.0125 0 .2
e ) 4
Q. 8\

11 | I S S |

0 2 .4 _ .6 8 1.0 1.0 8 6 .4 2
8 %
() (k)

B
? ©
|
0

solution varies from a straight line
through 6y and ©p, at high C,/L
values, and tends toward the straight
line through A and 1 - A as Co/L
approaches zero (see appendix B), ex-
cept for holding to the imposed end-
point values.

£=0.125

C,=0.0125 From various plots of the solu-

tions, it was found that all values of

56,
by "maps" as shown in sketches (J),
(k), and (1). These maps can be con-
structed from three sets of 6g, Of,

conditions. These latter results are
summarized in tables I and II. Tab;§
has values of the slopes 66 and 6f

.08 —_
Qi, and P; could be represented

.06

for the combinations, (a) 6y = 1.0,
o, = 1.0; (b) By, = 1.0, B = 0; and
| (c) 50 = 0, 67, = 0. Table IT contains
0 .2 .4 .6 .8 L0 values of the indirect transmission
o factors P; for the same sets of pa-
(18} rameters.

14



The three values for each CZ/E- that are given in the tables can be used
to map the solutions for any set of end-point conditions as indicated in
sketches (J), (k), and (7). These 3 points in table I are designated o, B,
and & to assist in showing their use in constructing the solution maps. Note
that the graphs of sketches (Jj) and (k) are identical when the coordinates are
labeled in the manner illustrated.

The gas-phase transmission factor Pg (eq. (34)) differs from P; only by
the factor Py and is not tabulated. The direct-transmission probability Pg
is only a function of L (eg. (35)) and is shown plotted in figure 4. Similarly,
the surface-diffusion transm1s51on factor Pg 1s readily obtainable from the
tabulated values of slope QL through equation (59) and thus is not tabulated.

Tt will be noted in sketches (g) and (h) that for a given L as C, de-
creases, the absolute magnitude of the slopes at the end points increases;
however, the product Czﬁ', which is a factor in the surface-diffusion flow
transmission factor, decreases as C, decreases, as would be expected.

Matched Boundary Solutions

The matched tube and end-plate solutions are readily obtained by using
the graphs for the general tube solutions and by superimposing the relations
for the upstream and downstream surfaces (egs. (21) and (27)). The procedure
is illustrated in sketches (m) and (n).

Eq. (27)

Eq. (21)

-4 | _
L-0125
Cp=0.0125

15



In sketch (m), the ordinate is the slope at the downstream end of the
tube, while in sketch (n) it is the upstream value. From the symmetry of the
two plots it may be readily shown that the solution must be along the line
6p *t 07, = 1.0, so that acEpally only one map is required to obtain the solu-
tion. For example, (at r = R) equations (21) and (27) and the matching rela-
tions (30) may be combined to give the relation

1- 95

1| L

1
L o,

[l

The general tube solutions, illustrated by sketches (m) and (n), may also be
expressed mathematically as

5]!_' = fl(-e—o) + bl§L
and

5(') = fl(l - -G—L) + bl(l - 50)

where fl(éb) and fl(l - éi) are the intercepts in (m) and (n), respectively,
and by is the slope of the lines. Combining these two expressions gives

u— 4 — -_—
fg ) £1(1 - o) + pl(l 7799)

§L fl(-é-o) + bl-G—L

This expression combines with the first relation to give
1-099 £1(1~78y) +by(l - 6p)

Cross multiplication and simplification of this last expression yield the rela-
tion

(1 - Bo)f1(Fp) = F£1(1 - By)

which further reduces to

1 - Qo = QL
since fl(éb) equals (1 - EL) when Ei =1 - 56. The matched-boundary solu-
tions thus have the properties

GO + GL = 1.0

16



rand

ﬁlo 6-
I °R i~ =1
Downstream =
60 = 9L,

at.5 8 7| face

Upstream 7 OR It should be noted that the di-

face \§§\\\\‘__ rection in which the coordinates x

and r have been taken herein requires
that the matched slopes at the upstream
end be equal in magnitude but opposite
in sign. This is illustrated in

sketch (o) showing a typical complete
EQ. (27), p=co solution.

—— X ——— 1

Direction of surface flow ———
{0)

-Eq. @1), p#eo The solutions to equation (9), which

are matched to the end-face solutions
through the boundary ccnditions of equa-
tions (30) and for p = =, are presented
in table III. A plot of the solutions
for 67 for these matched-flow cases is
I shown in figure 5, which shows 67 var-
i 7P iations with L for various constant
5

FBy-b+m: By

0 ¥ 10 values of szf. The corresponding
8 values of the surface-transmission
] factor PS for these same conditions

are shown in figure 6. Figure 7 shows
‘the variation in the total transmission factor with tube length for various
constant values of CZ/L. The lower curve of figure 7 represents gas-phase
flow only. Clearly, the surface-diffusion flow can become a large fraction of
the total flow as Cz becomes large. The calculations presented herein are
also seen to extrapolate very nicely to the long tube limits as calculated
from the relations of reference 10.

The matched-boundary-condition solutions for the single tube (p = ») may
also be examined with regard to their applicability to porous materials having
capillarylike pores. As depicted in sketch (o), the slope of the upstream and
downstream surface solutions approach zero with increasing r. The solutions
would be expected to be valid for pore spacings that allowed this condition to
be approached. As was pointed out previously (see the section Upstream and
Downstream Surfaces), the appropriate curve of figure 1 may be used to obtain
the exact solution applicable to a given pore spacing. The parameter p would
be equivalent to one-half the distance between pore centers (sketch (a)).

The function é?(gz), plotted in figure 1, when multiplied by the 53
yields the slope at R (see eq. (27)). The change in this function when p is
less than infinity can thus be used to obtain the change in slope, and hence in
surface flow for closely spaced capillaries. The relation is derived as
follows with the aid of sketch (p), where the coordinates have been changed
from the corresponding maps of sketches (m) and (n) by using the matching rela-
tions (30).
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The solution (5%)5 is obtained by simultaneous solution of the two equa-
tions

o, = o F(C

R (442)

2’p
and
- -
oy = ® + moy (44b)

Equation (44b) corresponds to the relation 56 + 5L = 1.0 1in terms of the pa-
rameters of sketch (p).

The solution for the slope is
F(C2)_
2’5

(53)5 = C, 5" m

5 (45)

The corresponding solution for S = o 1s the same as that for equation
(45) with j?(CZ)E;w replacing & (Cs)—. Thus, the ratio of the slope for

_ _ )
finite p to that for p = » 1is

G #e, s -

p R
== 7 FO - (46)
(a)s, *'5m R E

The values for the slope m are included in table I, and values of the func-
tion Z(Cp) are plotted in figure 1. Thus, the solutions for closely spaced
pores (p less than infinity) can be obtained from the single tube solutions
(i.e., 7 = ») and equation (46).

As an example, the case of Cp = 10, p = 2, and is presented in the
following table:

T [#(10) (fig. ﬂ( m : (Eﬁ)5=2/(5§)—=w
- table T
525 = [ o \qu.(44D )
1l0.14 |o0.e8 | -2,015 ~0.258 7___J

For this illustrative example, then, the slopes and hence the surface trans-
mission probabilities (eq. (39)) for the closely spaced pores (p = 2) would be
smaller than that for the corresponding single tube cases by the factors shown.

18



Comparison of Results with Those of Other Investigators

In reference 1 two systems, silver on molybdenum and silver on nickel,
were investigated. The values of the physical parameters cited therein and
also used herein, are given in the following table (notation of the present

paper being used in all cases):

System Q,

Silver-molybdenum|2.0|10-10| 10-%
Silver-nickel 1.5{10-8 | 10-4

T0s 3 H
sec lem /sec

ev

The resulting values of Pg, the ratio of surface-diffusion flow at the
exit to the gas-phase flow at the inlet are compared in the following table:

System

T, | L, | R, Pg
%K | em cm

Ref. 1l|Present
report

Silver-nickel
Silver-nickel
Silver-nickel
Silver-nickel

Silver-molybdenum|1000{0.005|/0.05 {0.27 0.20

1000| .005( .05 .15 .086
1280 .005| .025| .021 017
12801 .001[ .025| .037 .023
1280{ .005| .10 .005 .0046

It can be seen that the values of Pg of the present paper are all lower than
those of reference 1. This is expected since one of the assumptions of refer-

ence 1 was that 6y = 6., which

is higher than the value solved for herein, and

thus leads to somewhat higher flow by surface diffusion in the tube.

A direct comparison of the

results of the present calculations with those

of reference 5 is difficult to make because of the differences in the forms of

the adsorption isotherms used.

The present results are based on a linear

adsorption relation (eq. (5)), which, as previously pointed out, is generally

acceptable in representing most

adsorption relations at low coverage. In

reference 5, the evaporation rate data for the cesium-tungsten system (ref. 17)

3x10%7

»

g

o

>

&

4

=

R

®

=3

©

@ |
(] .04 .08 L12 .16

800

have been used. These data are very nonlinear
in the range used therein, as can be seen in
sketeh (q). This sketch shows the evaporation
rate curves for atoms, ions, and for the total
of ions plus atoms for a surface temperature of
1400° K. In the absence of an electric field
to remove ions from the surface, atoms alone
will evaporate. If a sufficiently strong elec-
tric field exists at the surface to remove the
ion current, both ions and atoms evaporate.
Under these conditions, at low coverage the ion
component is the major portion of the total
evaporation rate. To use a linear relation to
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approximate either the atom or ion evaporation rate, obviously means restrict-
ing the solutions to cases where 6, 1s no greater than about 0.08 for the
atoms or about 0.0l for the ions.

The use of the total evaporation rate curves as the adsorption isotherm
relation in the solution of equation (9), as was done in reference 5, involves
the simultaneous assumptions that an electric field exists to remove ions but
that the ion trajectories are not then influenced by this field.

Thus neither the approach of reference 5 nor the present one appears
adequate to calculate the case for total ion plus atom evaporation of the
cesium-tungsten system at coverage fractions above approximately 0,01.

CONCIUDING REMARKS

The object of this report was to analyze the flow characteristics of a
cylindrical tube, or pore, under conditions of free-molecule flow with surface
diffusion. The integrodifferential equation that describes the flow in the
tube was solved numerically for a wide range of varilables. Matching boundary
conditions were utilized to obtaln solutions that included upstream- and
downstream-face surface-diffusion flow as well. Transmission factor relations
were developed that allow quantitative comparisons to be made of the differences
between flow with and without surface-diffusion effects.

In general, it was found that with the inlet and exit surface coverage
fractions held fixed, the shape of the curves describing the surface coverage
fraction in the tubes varied as follows: with a large value of the surface-
diffusion flow parameter, solutions were nearly straight lines between end
points; as the parameter decreased, the curves approached the nearly straight-
line sclutions of zero surface-diffusion flow except for the fixed end points.

Matched-boundary-condition solutions were found to be cobtainable from maps
of general solutions for a given tube length and surface-diffusion flow param-
eter for either a single tube or for a closely spaced array of tubes. The
matched solutions were presented only for the single tube model, but relations
were derived that permit the application of these results to porous media
models made up of closely spaced capillaries. Transmission factors were found
to increase with increased surface-diffusion flow parameter, the increase being
proportionally much greater with longer tubes.

Comparison of results with one investigator showed excellent agreement.
In another comparison, differences were attributable to dissimilar basic
assumptions or boundary conditions for the model.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 21, 1965.
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APPENDIX A

SYMBOLS
[Unless otherwise specified, cgs units are used throughout. ]
parameter defined in eq. (Bl)
distance between adsorption sites
parameter defined in eq. (BL)
parameter defined in eq. (15)
slope of lines of general solution maps (sketches (1) and (m))
parameter defined in egs. (Cl) to (C5)
parameter defined in eq. (11)
parameter defined in eq. (14)
parameter defined in eq. (15)
surface-diffusion coefficient, cmz/sec
geometric factor defined in eq. (2)
geometric factor defined in eq. (3)
function defined by eq. (29)
parameter defined in eq. (C3)
function giving intercept of lines in sketches (m) and (n)
parameter defined in eq. (C5)
modified Bessel function of the first kind of order zero

modified Bessel function of the first kind of first order

modified Bessel function of the second kind of order zerc
modified Bessel function of the second kind of first order
Boltzmann constant, erg/%K

tube length, cm

mass of atom or molecule, g
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slope of lines on general solution maps for which 56 + §L = 1.0 (see
table I and sketch (p))

gas-phase flow rate into tube, atoms/sec

surface-diffusion flow rate into tube, atoms/sec

gas-phase flow rate out of tube, atoms/sec

surface-diffusion flow rate out of tube, atoms/sec

direct transmission factor, fraction of entering gas-phase flow parti-
cles that exit downstream without experiencing any collisions with
tube wall

sum of Pi and Pd

indirect transmission factor, fraction of entering gas-phase flow par-
ticles that exit downstream after experiencing one or more collisions
with tube walls

ratio of surface-diffusion flow at exit to entering gas-phase flow

total transmission factor

pressure, dyne/cm?

desorption energy, eV

tube radius, cm

radial distance variable

temperature, °K

temperature expressed in electron volts, Tgy = iil%gg

time, sec

velocity, cm/sec

axial distance variable, cm

axial distance variable at specific location (see sketch (b)), cm
designation of general solution points (see table I)

sticking coefficient

convergence criterion defined in eq. (38)



e fraction of monolayer surface coverage

o' gradient in fractional surface coverage with respect to nondimensional dis-
tance variable

8" second derivative of 6 with respect to nondimensional distance variable

g value of surface coverage fraction in tube at inlet

66 gradient of surface coverage fraction in tube at inlet

8r, Vvalue of surface coverage fraction in tube at exit

9; gradient of surface coverage in tube at exit

QR surface coverage fraction on upstream or downstream face at tube radius R

Qé gradient in surface coverage fraction on either face at tube radius R

em maximum surface coverage fraction attainable in system

i arrival rate, atoms/(cm?)(sec)

H7 arrival rate at conditions existing in inlet chamber, atoms/(cm?)(sec)

v rate of particles leaving surface, atoms/(cm?)(sec)

vq Pparticle leaving rate from downstream face, atoms/(cm? ) (sec)

P radial distance at which concentration gradient becomes zero

c surface concentration, atoms/cm2

o' surface concentration gradient with respect to nondimensional distance
variable, atoms/cm

o"  second derivative of ¢ with respect to nondimensional distance variable,
atoms/cm

Om surface concentration for a £illed monolayer, atoms/cm2

T adsorption time, sec

T, time to form monolayer (defined in eq. (8)), sec

5 constant in eq. (C7), equal to 10-13 gsec in typical calculations

Superscript:

Barred distance quantities refer to nondimensional ratios of the variable
to the tube radius R (e.g., I = I/R); barred parameters involving 6
refer to ratios of the variable to the value 6, (e.g., fp = GO/QW)
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APPENDIX B

APPROXIMATION OF EQUATION (1)

As mentioned in the report, the solution of equation (1) is nearly linear.
As a result, it has been approximated by a relation of the following form:

v(x)

B

=~ A + Bx (B1)

The true solution also has the property

véi) . V(IL; x) _ 1 (52)

as has been shown to be required based on thermodynamic arguments (refs. 8
and 11). Using equation (B2), the quantity B can be expressed in terms of A.

1 -2A
- (B3)

Substituting into equation (Bl) yields

“E) =4y -2 _z_> R
M1 i

(B4)

L"IINI

The parameter A (the value of v(O)AJl) can be determined approximately
by assuming equation (B4) to be a solution to equation (1), substituting, per-
forming the integration, and evaluating the resultant expression at x = O,
or x = L. The result is

ot

1 + -

A= (B5)

This result was also noted in references 6 and 19; however, the expression in
reference 19 differs from equation (B5). The reason for the difference is not

known. It may be due to a translation error.
The agreement between the A values obtained from equation (B5) and the

end-point values obtained from converged numerical solutions (ref. 8) is within
1 percent as shown in the following table:
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T v(O)/ul A
(ref. 8) (eqa. (B5))

0.5]0.6037 0.6074 .
1.0 .6738 .8736
2.0] .7576 7574
4.0| .8366 .8369
8.0| .8990 .9010
16.0| .9417 . 9450

The variation of A with L is plotted in figure 8. The values can be used
with equation (B4), when no greater accuracy is required, to obtain values of
wall fluxes in the absence of surface-diffusion effects. More accurate values
for cylindrical tubes as well as for convergent and divergent tubes are avail-
able in reference 8.
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APPENDIX C

ADSCRPTION ISOTHERMS

The discussion of adsorption isotherm relations included herein is in-
tended merely to give an insight into the subject. Detailed discussions may be
found in references 22 and 23. The type of relation utilized for a given
system 1s usually governed by the assumptions made with respect to the follow-

ing factors:

(a) Adsorbed film mobility: The classification of an adsorbed film as
mobile or immobile depends on the relative values of the energy barriers to
diffusion and to evaporation. If the energy barrier to surface diffusion is
low compared with the evaporation energy, the particles will migrate for some
time before they are apt to leave the surface; hence the film is classed as

mobile.

(b) Variation of adsorption energy (binding energy) with surface concen-
tration: Adsorption energy may vary because of surface inhomogeneities. It
may also vary because of dipole interactions among the adsorbed species.

(c) Relative surface concentration: Certain forms of the adsorption
isotherm relation have a filled monolayer as the limiting concentration; others
do not restrict adsorption to a monolayer but permit multilayer adsorption.
This distinction also generally depends upon the relative adsorption energies
of the gas for the substrate and of the gas for itself.

A summary of some of the various forms for the adsorption isotherm rela-
tion from reference 23 is as follows:

Mobile film (no interaction)

and

2] 8
bo=Cp 7 5 exp(l — 9> (cz2)

Mobile film (interaction)

e} 6
b= Cq T exp(l —5 - fe) (c3)
Tmmobile film (no interaction)
_ 0
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Tmmobile film (interaction)
°]
Ho=Cq -5 exp(-go) (cs)

where p is the arrival rate, Cq1 1s a proportionality constant, and 6 is
the surface concentration expressed as a fraction of a monolayer.

Equations (Cl) and (C4) are the simplest of the preceding relations.
Equation (Cl) is not bounded and permits coverages in excess of a monolayer.
Equation (C4), usually referred to as the Langmuir adsorption relation (ref.
23), represents the behavior characteristic of many systems of interest where
the adsorption energy of the gas for the substrate 1s considerably greater than
the adsorption energy of the gas for itself (i.e., the sublimation energy). In
this case, adsorption is usually restricted to less than a monolayer until gas-
phase arrival rates (or corresponding gas pressures) approach the saturation
value corresponding to the temperature of the adsorbing surface.

Equation (C4) can be derived from a simple dynamic equilibrium approach.
The evaporation rate is assumed to vary directly with the surface concentration

0 of adsorbed particles and inversely with the average adsorption time <
(ref. 22):

v==2=— (ce)

The adsorption time T 1is related to the desorption energy Q:

T T €XD Q__ C7
O (IIeV) ( )

The adsorption rate is assumed equal to the product of the arrival rate pu,
the sticking coefficient v, and the area available for adsorption 1 - 9.
In equilibrium the adsorption rate equals the vaporization rate so that

o
y = py‘(l - @) =g 1 exp(— &) (08)
e Tev
or
e
= C Co
p 1 1-35 ( )
where
s (- 2
Cq = — expl- =—— (Cc10)
1 o TeV
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From equation (C8) it can be seen that for ¥ = 1 and low values of 6
v =p = Cy0 (ci1)

This is identical with equation (5), and, in fact, all the adsorption isotherm
relations approach this form for low 8. As a result, the solutions of the
flow relations obtained in this report are based on a relation of the form of
equation (Cll). They can be considered characteristic of systems having con-
stant adsorption energy over the range of surface concentration considered and
for which the isotherm behavior described by equation (Cl) applies without
limit to 6. For the other isotherm relations they are restricted to systems
with low 6 values.

28



APPENDIX D

NUMERICAL SOIUTION OF EQUATION (9)
by Carl D. Bogart

Equation (9) can be written in finite difference form as
2h
Q(Xi) = Fl,z(xi) + = F3,2(Xi’0)90 + 4:F3’2(Xi,h)el +
Co
2Py o(x;,28)05 + . . .|+ "] [0Cx4q) + 00x;_1) - 20(x;)]

where the integral has been expanded by Simpson's rule and the second deriva-
tive by a three point formula. The notation is as follows: x5 = ih, where
1i=0,1, « « v, N=-1; h=L/(N - 1); and F3,2(xi,1h) is the kernel function
of the integral with 6(xj) = 04. This arrangement results in N linear equa-
tions in N unknowns, which can be written in matrix form as A0 = Fp 2.
Since the values of 9 at x =0 and x = L are specified, the integro-
differential equation has a unigue solution.

By inspection, the matrix A5 1is tridiagonally dominant because the
terms on the diagonal, subdiagonal and superdiagonal are on the order of Cz/hz.
The mesh increment h may be chosen small enough so that 02/1’12 > 102 and
the absolute value of any other terms ig less than unity. By the theory of
regular splittings (ref. 24), the matrix equation may be written as
(T - B1)o = Fi,p, vhere T; is a matrix having only the tridiagonal terms
and By has no’tridiagonal entries. The iterative scheme then becomes

7.0°%"L = B R + F. _, where n denotes the nt iterate (n=0,1,2, « . ).
1 1 1,2 Y

An initial guess is supplied for 6 and ragid convergence results since Blen
represents only a small correction and gnt may be calculated explicity by
an algorithm for solving tridiagonal systems (ref. 24).

A schematic flow chart and Fortran IV listing of the computer program are
as follows:
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0%

Flow chart
| .
Do10; J=1 N Do 90; K=1,N
. Calculate Read values h = L7100
Start Se}tN= 191‘;]1 || indexof || Nl D, || Calculate Ca|cu:ate Catlc.ulaie
5 6's to be 1 o P 0 multiples of kernel entries to
g=10 printed out L"d f to be used function matrix By

Iteration cycle

Do 136; J=2,N Do 135; J=2,N Do 130; J=1,N Doll; J=1,N Do20; J=2,M Do 50; J =3, M
alculat
Calcutate Calcuiate Calcutate Calculate o
gn+t Iter = 0 Fi,2 and first diagonal diagonals of
guess of 8 of Ty !
Not
Not converged Iteration exceeded
limit test
Exceeded Calculat
culate .
Converged derivatives Printand | neyi case
and punch
[ __I flow answer

“Fortran statement numbers
*Fortran do statement



MOLECULAR FLOW PRUOGRAM
$IBFTC REYNDO DEBUGsLISTsNODECKsREF
DIMENSION G({101)sKER(101)sAA(101+s101)sF(101)sY(101)sA1(101)
DIMENSION WW(101)+GG(101)sA2(101)+A3(101)

DUOUBLE PRECISITON AAsAl1sAZs ABo» AC As Cos DH2
2 DH s Dy EDo» FPS» Fe Gy H6» Ho
3 KERs LBAR, SUM, XJs Y yEP

DOUBLE PRECISION GGsWWsSAVSA3
DIMENSION INDEX(27)
DATA N/101/
DATA IT4EP/199s1.D-5/
C LBAR=L
C H=MESH S1ZF
C D=MULTIPLIER OF D2THETA/DX2
C D Is ACTUALLY D/C
C LBAR/H MUST BE EVEN
C LBAR/H MUST BE LESS THAN OR EQUAL TD 100
C C IS MULTIPLIER OF Y-FUNCTIGN
WRITE(6,100)
100 FORMAT (1H1)
C INDEX 0OF VALUES TO BE PRINTED
DO 162 J=1s+6
L=2%{J-1)
INDEX(J)=L
162 TINDEX(JU+21)=0L+90
DO 163 J=7,21
L=5S5%*(J~4)
163 INDFX(Jy=L
M=N-1

1 READ(54105) RLBARSRDsRC4READ1,READ2,PD
LBAR=RLBAR
D=RD
C=RC
=.01DO*| BAR
H3=H/3.
H6=H/6 D0
DO 10 J=1sN
XJ=J-1
XJ=XJ%H
AB=XJ##2+44D0
AC=DSQRT(AB)
10 KER(J)=14D0=XJ¥IXJ**%2+6.D0)/ (AB*AC) .

e SET UP FINITE DIFF EQNS

DO 90 K=1sN

JJ=N—-K+1
AA(KsN)=—HE*KER (JJ)
AA(K»s1)=—HE*KER(K)
AA(KsK)=0.D0

L=k~-1

LL=K+1

IF(KeGTal) AA(KsL)=0eDO
IF(KelLTeN) AA(KsL)=0eD0D
L=L-1

LL=LL+1

IF(LeLT.2) GO TO 60

DO 70 J=2,L
XJ=4=-2%MOD(J,2)

I=K-J+1
70 AA(K s J)=—XJU%HO*KER (1)
60 IF{LL.GT«M) GO TO 90

DO 30 J=LL M



XJI=4=2%MND(Jy2)

I=J-K+1
21 AA(K s J) == XIXHOEH¥KER (1)
=1 COMTINUF

PH=N/H*%2
PH2=2 4DO#DH+1 . D"
DN 50 J=34M
XJ=4-2%MOD{Js2)
A3 (J=1) =-DH-XJxHE*KFR(2)
XJ=4-2%MOD(J=-1+2)
A2(J ) ==DH=XJXHEXKFR(2)
DO 20 J=2,4M
XJI=4=2%MOD( J,2)
2n A1) =DHP=XJ*H6
A2(2) ==DH-HHE¥KFR(2)
A3 (M=1)=A2(2)
DG 11 J=1,N
XJ=Jd-1
X J=xJ¥*H
AR=XJ¥%D44 4DO
AC=DSRRT(AB)
ClU)=eBDNR ((XJ%%D242,D0 V/AC=XJ)/C
11 FUJ)=(LRAR+]1 DO=XJ) /(CH{LRAR+ED DN )
C MATRIX FNTRIFS TN ALLNW FND VALHES TN RPEMAIN FIXFD
A2(NY=0,DN
A3({1)=04P0
AL(N)=1400
A1(1)=1D7
AZINI=NDO
A2 (1)=" D0
DD 09 J=1,N
AA(1sJ)=",
99 AA(NsJ)=N,
C PFADL 1S VALUE 0OF FUNCTION AT X=0
F{1)=RFAD]
G1)Y=F (1)
C READ2 1S VALUF OF FUNCTINN AT X=L
F(N}=RFADD
CNYSF (N

A% ]
)

1TFR=0
C BEGIN ITERATION CYCLF
115 PN 130 J=1sN
cuM=G({J)
DO 132 JJ=1eN
1372 UM STIMCAA (S JJY ¥R (JUD)
120 y{gy=cim

VW )=AR(TY /AT (D)

AA(T1Y=Y (1Y /AT 0D

DN 135 J=24N

COUIISIY (VA2 () #AA (=1 /(AT (I =AD (J) ¥ W (J=1))

128 WEOUI=A2(JY /(AT () =A2 (JV¥wWi (J=-1))

NNL =N

SAV=F (M)

F{N)=(RG(N)

FoQ=DARC{ (SAV=F (N)}/F (M))

=Ml

N 136 J=24N

cAV=F{K)

FIK)=AG(K) =W (Ky*F (K+1)

A=PABS ((SAV=F (K)YY/F (K))



136

C

151
160

180

181

170

182

164

C

IF(A«LE.EPS) GO TO 136
EPS=A

NNL =K~

K=K-1

ITER=ITER+1

CONVERGENCE TFEST

IF{EPSJLELEP) GO TO 160
IF(ITERL.LFSIT )GO TO 115
Y(101)=0,

RB=0s

DO 170 J=1,21

RA=RB#*%*2

RC=1e—-RA

RD=1e+RA

FRA==4 o #RA

DO 180 L=1+100

Xt=L~1

XL=LBAR-XL*H

XR=xL%%*2

YIL)=F (L) #*XL# (XR+RC)/ { (XR+RD ) #%#2+FRA)¥%1 45
CONTINUE

51=0+

$52=0e

DO 181 1 =24N,s2

S1=51+Y (L)

82=S2+Y(L+1)
WWIJ)I=H3# (Y=Y (1IN1)+4e*S1+2.%52) *¥RB
RB=RB+.C5

51=0.

52=Ce

DO 182 U=2+20s2
S1=S1+wWwW(J)
S2=82+WW(J+1)

DIND= o 2#C# (WW—WW(21)+4%S514+2e%S2) /3,
DTH1I=(F(2)-F)/H
DTHL=(F(N)-F(N=1))/H
PG=PIND+PD

DO 164 J=1s27
L=INDEX(J)+1

Y(JY=F (L)

PS=2 e ¥D#CH*DTHL

PRINT ANSWERS

WRITE(651C1) LBARSDSCyRFADL,RFAD2,4DTH1 s NTHL

WRITE(6,102) ITERP,FPS,PINDsPR,PSH

WRITE(65103) {INDEX(J)aY(J)sJ=1927)

Y(28)=DTH1

Y(29)1=DIHL

Y({30)=1ITFR

Y(31)=EPS

Y{32)=PIND

CALL BCDUMP(Y(1)sY(32))

WRITE(645104)

WRITE(6,104)

GO 70 1

FORMAT (6H LBAR=F7e433HsD=F15¢833HsC=F2s0s9Hs THETA 0=G1548>
SHs THETA L=G15+8+s8H,DTHDX0=6154858HsDTHDXL=G1548)
FORMAT(6H ITER=1335HsEPS=FB84636HsPIND=Gl4s834HsPG=Gl4 48
4HsPS=G15eB43HsH=FB8,6) )
FORMAT (1HCO(T14s1PE1Ne2)/1H 9(I1451PF1043)/1H 9(144,1PE10e3))
FORMAT (1HK)

FNRMAT(6F1045)
END
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Nondimen-
sional
tube
length,
i

1/16

1/8

16

Diffusion
parameter,
Co/T

.01

TABLE I. - END-POINT SIOFES

General solution points

a ( B
3t 80 - 1.0 {.5_0 =0 |
90 for {9 =1.0/9 forlg, =0 |0
L L
=1 04, =0 —1 94 = 1.0[ =t
20 20
1, for {9L =0 8y, for {90 = 1.0 61,
-0.02373 0.02422
-.2362 2411
-2.2591 2.308
-16.1411 16.588
-0.02275 0.02371
~.2254 .2350
-2.072 2.1687
-12.258 13.061
-0.01257 0.0178
-.1196 L1715
-.8301 1.2887
-3.0089 5.551
-0.002692 0.008786
-.02522 .08456
-.1690 .6509
-.6609 3.0113
-0.000155 0.002526
-.00152 .02488
-.0131 .2190
-.0708 1.223

]
o]
H
—P—
]
(@]
mn

e
=0
for {9

-16.0062
-16.0767
-16.773
-23.10

-8.007

-8.0747

~-8.743
-14.335

-1.0048
-1.048
~1.427
-3.374

~0.2515
~.2644
~.3570
-.8195

-0.06261
-.06365
-.07293
-.1228

Slope of
lines on
general
solution
maps,
m

-32.013
-32.158
-33.595
~46.64

-16.015
-16.159
-17.581
-29.473

-2.0148
-2.148
-3.313
-9.290

-0.509

-.588
-1.216
-3.989

-0.1276
~.1507
-.3517

~1.398




TABLE II.
Nondimen-| Diffusion
sional |parameter,
tube Co/T
length,
I
1/16 10
1
1
.01
1/8 10
1
1
.01
1 10
1
.1
0L
4 10
1
1
.0L
16 10
1
1
.01

- INDIRECT TRANSMISSION FACTORS

Ratio of inlet to maximum sur-
face coverage fraction, eo

1 1

Ratio of exit to maximum sur-
face coverage fraction, 07,

L 0

0.0436 0.0263
. 0435 .0263

.0425 .0263
.0363 .0259
0.1006 0.0558
.1002 .0558
.0959 .0557
.0764 .0552
0.5998 0.2546
.5867 .2550
.5059 .2589
.3739 L2717
0.9247 0.2178
.9010 .2200
.7624 .2345
.5192 .2664
0.9417 0.0757
.931 .0767
.844 .0842
.565 .1065

0

o]

0
.00012
.00111
.00732

0.00006
.00053
.00475
.0244

0.0015
.0141
.0907
.2085

0.0019
.0169
.0965
.2089

0.003
.0027
.0203

-0694
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TABLE ITI. - MATCHED BOUNDARY CONDITION SOLUTIONS

Nondimen~ |Diffusion
sional |parameter,
tube C,/T

length,
T
1/16 10
1
W1
.01
1/8 10
1
A
Noxk

16

Ratio of
inlet to
maximum
surface
coverage
fraction,

[

Ratio of
exit to
maximum
surface
coverage
fraction,

or,

0.475
+438
.360
.267

0.461
.415
.323
.248

=]

5:

Exit
coverage
fraction
gradient,

1
o1,

-0.807
-1.95
-4.71
-10.68
-0.608
-1.38
-3.07
-7.07

-0.254
~.419
~. 737

-1.79

-0.1236
~.158
~-.231
~.478

-0.0465
~.0508
~.0562

‘.OBSGJ

Indirect
trans-

mission
factor,

Surface
trans-
mission
factor,
Ps

14.88

1.62

.18
.0267

Direct Total
trans- trans-~
mission|mission
factor,| factor,
Py Pp

0.939 1.971
1.205

l 1.021
.976

0.883 2.454
1.279

l 1.012
.954

0.382 5.751
1.502

$ .804
.696

0.056 | 10.286
1.626

l 519
377

0.004 | 15.059
1.767

.301

.149




Function, F(Cyl, defined in eq. (29}

Arrival rate, y, atoms/(cmz)(sec)

.1
.001

10

Figure 1. - Parameters useful for solution of upstream and downstream wall expressions {egs. (21) and (27)).
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Figure 2. - Variation of equilibrium arrival rate with temperature for various metal vapors (ref, 20

and eq. (41)).
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Log)g of adsorption time, sec, log1g T

Direct transmission factor, Py
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Figure 3. - Variation of adsorption time with energy for various

temperatures. Constant, Ty= 10!
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Coverage fraction, 8

Figure 5. - Matched solutions of variation of surface coverage at down-
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Total transmission factor, Pr= Pg+Ps
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